Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.

نویسندگان

  • Virginia Fernández
  • Yasuyuki Takahashi
  • José Le Gourrierec
  • George Coupland
چکیده

Plants detect changes in day length to induce seasonal patterns of flowering. The photoperiodic pathway accelerates the flowering of Arabidopsis thaliana under long days (LDs) whereas it is inactive under short days (SDs), resulting in delayed flowering. This delay is overcome by exposure of plants to high temperature (27°C) under SDs (27°C-SD). Previously, the high-temperature flowering response was proposed to involve either the impaired activity of MADS-box transcription factor (TF) floral repressors or PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) TF-mediated activation of FLOWERING LOCUS T (FT), which encodes the output signal of the photoperiodic pathway. We integrate these observations by studying several PIFs, the MADS-box SHORT VEGETATIVE PHASE (SVP) and the photoperiodic pathway under 27°C-SD. We find that the mRNAs of FT and its paralogue TWIN SISTER OF FT (TSF) are increased at dusk under 27°C-SD compared with 21°C-SD, and that this requires PIF4 and PIF5 as well as CONSTANS (CO), a TF that promotes flowering under LDs. The CO and PIF4 proteins are present at dusk under 27°C-SD, and they physically interact. Although Col-0 plants flower at similar times under 27°C-SD and 21°C-LD the expression level of FT is approximately 10-fold higher under 21°C-LD, suggesting that responsiveness to FT is also increased under 27°C-SD, perhaps as a result of the reduced activity of SVP in the meristem. Accordingly, only svp-41 ft-10 tsf-1 plants flowered at the same time under 21°C-SD and 27°C-SD. Thus, we propose that under non-inductive SDs, elevated temperatures increase the activity and sensitize the response to the photoperiod pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold

Background: Intermittent cold stress delays flowering. This results from interaction between the cold and photoperiodic pathways. Results: CO protein is degraded through an HOS1-mediated ubiquitination mechanism during brief cold treatments. Conclusion: CO acts as a molecular hub that integrates photoperiod and cold signals into the flowering genetic pathways. Significance: The CO-HOS1 module i...

متن کامل

PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length

Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to li...

متن کامل

The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress.

The timing of flowering is coordinated by a web of gene regulatory networks that integrates developmental and environmental cues in plants. Light and temperature are two major environmental determinants that regulate flowering time. Although prolonged treatment with low nonfreezing temperatures accelerates flowering by stable repression of FLOWERING LOCUS C (FLC), repeated brief cold treatments...

متن کامل

The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.

Regulated RNA metabolism appears to be a critical component of molecular mechanisms directing flowering initiation in plants. A group of RNA binding proteins exerts their roles through the autonomous flowering pathway. Posttranscriptional mechanisms regulated by microRNAs (miRNAs) also play a key role in flowering-time control. Here, we demonstrate that the GIGANTEA (GI)-regulated miR172 define...

متن کامل

Balancing forces in the photoperiodic control of flowering.

In many plant species, the duration of the daily exposure to light (photoperiod) provides a seasonal cue that helps to adjust flowering time to the most favourable time of the year. In Arabidopsis thaliana, the core mechanism of acceleration of flowering by long days involves the stabilisation of the CONSTANS (CO) protein by light reaching the leaves, the direct induction of the expression of F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2016